حل معادلات دیفرانسیل با مشتقات جزئی به روش تبدیل مشتق و تجزیه آدومیان

thesis
abstract

هدف اصلی در این رساله‎،‎ حل مسائل معادلات دیفرانسیل با مشتقات جزئی به دو روش تجزیه آدومیان و تبدیل مشتق است. روش تجزیه آدومیان، روشی کارا و قوی برای حل معادلات دیفرانسیل با مشتقات جزئی خطی و غیرخطی، بدون نیاز به هرگونه پارامتر است. در این روش جواب را به صورت یک سری همگرا تقریب می زنیم. خاصیت عملی روش تجزیه آدومیان، ارائه دادن جواب های واقعی و مناسب از دستگاه های مختلط غیرفیزیکی، بدون در نظر گرفتن شرایط اضافی و معمول در مسأله ی اولیه است. روش تبدیل مشتق، به عنوان روش دوم برای حل مسائل معادلات دیفرانسیل با مشتقات جزئی ارائه شده است. روش تبدیل مشتق، یک روش تکراری و متفاوت از سری تیلور برای به دست آوردن جواب به صورت چندجمله ای است. در این پایان نامه، علاوه بر معادلات دیفرانسیل با مشتقات جزئی، معادلات دیفرانسیل کسری با مشتقات جزئی به روش تجزیه آدومیان بررسی می شود. با ارائه نتایج عددی، این دو روش مقایسه می شوند و نتایج عددی حاکی از دقت و سرعت محاسبات این دو روش در قیاس با سایر روش های عددی است. کلمات کلیدی: معادلات دیفرانسیل با مشتقات جزئی، روش تجزیه آدومیان، روش تبدیل مشتق، چندجمله ای های آدومیان، معادلات دیفرانسیل کسری با مشتقات جزئی

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

تعدیل وردشی شبکه در حل معادلات دیفرانسیل با مشتقات جزئی دو بعدی

در روش وردشی برای تعدیل شبکه، شبکه تعدیل پذیر به عنوان نگاره یک شبکه ثابت یکنواخت روی یک دامنه محاسباتی تحت تبدیل مخنصات مناسب بنا می شود. این تبدیل می نیمم کننده یک تابعک معین می باشد که میزان خطا را در نتایج عددی اندازه می گیرد. در این راستا یک تابع نشانگر تجویز می شود تا تعدیل شبکه را کنترل کند. در این مقاله یک تابعک تولید و تعدیل شبکه که تعریف آن بر نگاشت های همساز روی خمینه ها استوار است، ...

full text

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

حل معادلات دیفرانسیل با مشتقات جزئی با روش تبدیل دیفرانسیل و روش ترفتز

پایان نامه حاضر در سه فصل تدوین شده است که به صورت زیر مرتب شده اند. در فصل اول یک سری مفاهیم پایه و مقدمه ای کوتاه بر روش ترفتز، روش تبدیل دیفرانسیل و معادله برگر آورده شده است. فصل دوم شامل شش بخش است که در بخش اول مسائل مقدار مرزی برای یک دسته از معادلات دیفرانسیل جزئی مرتبه دوم که شامل معادلات سهموی و هذلولوی است، معرفی شده است. با استفاده از تبدیلات مختلفی نشان داده شده است که چگونه این ...

15 صفحه اول

تعدیل وردشی شبکه در حل معادلات دیفرانسیل با مشتقات جزئی دو بعدی

در روش وردشی برای تعدیل شبکه، شبکه تعدیل پذیر به عنوان نگاره یک شبکه ثابت یکنواخت روی یک دامنه محاسباتی تحت تبدیل مخنصات مناسب بنا می شود. این تبدیل می نیمم کننده یک تابعک معین می باشد که میزان خطا را در نتایج عددی اندازه می گیرد. در این راستا یک تابع نشانگر تجویز می شود تا تعدیل شبکه را کنترل کند. در این مقاله یک تابعک تولید و تعدیل شبکه که تعریف آن بر نگاشت های همساز روی خمینه ها استوار است، ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023